- Review of power series

P

Def: An infinite sum is a sum of the form

\n
$$
\sum_{n=0}^{\infty} a_{n} = a_{n} + a_{1} + a_{2} + a_{3} + a_{4} + \cdots
$$
\nwhere the a_{i} are real numbers.

\nWe say that the sum above converges if there exists a real number 5 where

\n
$$
\lim_{n \to \infty} \frac{N}{a_{n}} a_{n} = \lim_{N \to \infty} \left(a_{0} + a_{1} + a_{2} + \cdots + a_{N} \right) = S
$$
\n
$$
\lim_{N \to \infty} \frac{N}{a_{0}} a_{n} = \lim_{N \to \infty} \left(a_{0} + a_{1} + a_{2} + \cdots + a_{N} \right) = S
$$
\nThus, the first is a real number 1.

\nThus, the first is a real number 2.

\n
$$
\lim_{N \to \infty} \frac{S_{0,n} = S}{a_{0} = S}
$$
\nIf the above limit doesn't exist, then we say that the infinite sum diverges.

$$
\frac{E_{x}}{\sum_{n=0}^{\infty} \frac{1}{2^{n}}} = 1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots
$$
\n
$$
E_{1} = \begin{cases}\n\frac{1}{2^{n}} & \text{all } 1 & \text{all } 2^{n} \\
\frac{1}{2^{n}} & \text{all } 2^{n} \\
\frac{1}{2
$$

Def:	A power series	is an infinite sum
of the form	\n $\sum_{n=0}^{\infty} a_n (x-x_0)^n = a + a_1 (x-x_0) + a_2 (x-x_0)^2$ \n $+ a_3 (x-x_0)^3 + \cdots$ \n	\n $\sum_{n=0}^{\infty} a_n (x-x_0)^n = a + a_1 (x-x_0) + a_2 (x-x_0)^2$ \n
Now x is an variable and the a_n and		
x_0 are constants. The power series is said to be centered at Xe		
$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots$ \n		
$\sum_{n=0}^{\infty} a_n (x-x_0)^n$ This power series is centered at Xe=0 is centered at Xe=0 \n $a_n = 1$ \n $a_n = 1$ \n $a_n = 1$ \n $a_0 = 1$ \		

$$
\frac{Ex^{2}}{x^{2}} = 1 + 5 + 5^{2} + 5^{3} + \cdots
$$
\n
$$
x = 5^{n} = 1 + 5 + 5^{2} + 5^{3} + \cdots
$$

diverges

$$
\frac{1}{\text{link of }} \sum_{n=0}^{\infty} x^{n} \text{ as a function } f(x).
$$
\n
$$
\int_{S_{p}} f(x) = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + x^{4} + \cdots \text{ where } f(x) = \frac{1}{1-x}
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n
$$
\int_{S_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \cdots = 1 - 0 = 1
$$
\n<math display="</math>

However, $f(z) = 1 + 2 + z² +$ $2^{3} + \cdots$ $f(-3,2) = 1 2 + 7$
3.2 + (-3.2)² + (-3.2)³ + · · · are undefined .

Theorem: There are three possible scenarius for a pouver series $\sum_{n=1}^{6} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots$ 1) The series converges only when $x = x_0$. $n = o$ \leftarrow \leftarrow \times Here you can only plug x=xo into the sectes. In this case we say the radius of convergence is $r=0$ 3 There exists r>0 where the. series converges for all x when $x_{0}-r < x < x_{0}+r$, but it doesn't converge $X>7+_{o}X$ 70 x_{0} r is called the radius In this case as long as x is in convergence this interval the series converges At
past the endpoints it will diverge either converye or diverye.

3) The series converges for all x.

 \times

Here $r = \infty$ is the radius of convergence.

The next examples are from Calculus.

$$
\frac{Lx}{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = 1 + x + \frac{1}{2!} x^{2} + \frac{1}{3!} x^{3} + \cdots
$$

Converges for all x.
Here $x_{0} = 0$, $r = \infty$

$$
\frac{Ex: The single cosine series centered at x_0=0 are:}
$$

The next examples are from Calculus.
\nEx:
\n
$$
\frac{Ex}{e^x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots
$$
\nConverges for all x.
\nHere x_e = 0, f = 10
\n
\n
$$
\frac{Ex}{at} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}
$$
\n
$$
= x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots
$$
\n
$$
= x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots
$$
\n
$$
\frac{1}{3!} (x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n+1}
$$
\n
$$
= 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \cdots
$$
\nThese both converge for all x
\nSo, f = 10.

 $So, r = \infty$.

 $EX: We can make a power series$ $\overline{c}\cdot\overline{c}$ at $x_0 = 1$ that converges t_o $\ln(x)$. It is, es
(from
Calculus) from make a power series
 $x_0 = 1$ that converges
 $x_1 = 1$ that converges
 $x_2 = 1$ that converges
 $x_1 + x_2 + x_3 = 1$ from $x_1x_2 + x_1x_3 + x_2x_3$ $\int_{n}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} (x \binom{1}{2}$ $h = 1$ $=\sum_{n=1}^{n} \frac{n}{(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \cdots}$ $-1)^2 + \frac{1}{3}(x-1)^3 - \cdots$
when $0 < x < 2$. It converges On a power series

that converges

 $y^2 + \frac{1}{3}(x-1)^3$
 $y^2 + \frac{1}{3}(x-1)^3$

when $0 < x < 2$

Here we have:
 $y = x_0$
 $y = 2$ Here we have : g raph of
 g^2
 g^2 (x-1) power series

that converges
 $+\frac{1}{3}(x-1)^3$
 \cdot
 \mathfrak{f} $\begin{matrix} 1 \ 0 \end{matrix}$ = $(x-1)-2(x-1)$
 $T + \text{converges on which } 0 < x < x$
 $T + \text{converges on which } 0 < x < x$
 $T = 1$ $\frac{1}{\sqrt{e}}$
= X_0
 $\frac{1}{\sqrt{e}}$ $r = 1$ $r = 1$ ζ $X_0 = 1$ F=1
T=1
Cadius of
Lonvergence of x_0 = 1 σ (adius or

$$
\frac{\pi}{\pi} \left(x \right) = \sum_{n=0}^{\infty} a_n (x - x_n)^n = a_n + a_n (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \cdots + a_3 (x - x_0)^4 + \cdots
$$

Then,

$$
a_{n} = \frac{f^{(n)}(x_{0})}{n!}
$$

$$
\frac{Ex}{\sin(x)} = \frac{1}{x} \cdot \frac{3}{5!} \cdot \frac{1}{5!} \cdot \frac{5}{7} - \frac{1}{7!} \cdot \frac{7}{5!} \cdot \frac{4}{5!} \cdot \frac{1}{5!} \cdot \frac{
$$

E: Find ^a power series for f(x) ⁼ X2 centered at ^X . = 2. Let's use the formula above to hopefully get an answer. f(x) ⁼ x - f(z) ⁼ ⁴ f(x) ⁼ 2x + f(z) ⁼ ⁴ f"(x) ⁼ ² + f"(z) ⁼ ² f(3)(x) ⁼ 0- f'(z) ⁼ ⁰ f(k)(x) ⁼ ⁰ + f(k)(2) ⁼ ⁰ K7, ⁴ k34 (x -

$$
f(z) + f'(z)(x-z) + \frac{f''(z)}{z!}(x-z)^{2} + \frac{f^{(3)}(z)}{3!}(x-z)^{3}
$$

+
$$
\frac{f^{(4)}(z)}{4!}(x-z)^{4} + \cdots
$$

= 4 + 4(x-z) +
$$
\frac{2}{2}(x-z)^{2} + D(x-z)^{3} + D(x-z)^{4}
$$

 $= 4 + 4(x-2) + (x-2)^2$

One can check: $x^2 = 4 + 4(x-2) + (x-2)^2$ And the right-hand side always And the right-hand side alware
Converges since its a finite sum. converges since is increased 5
,00 The radius of convergence is r=
je the formula works for all X.

$$
\frac{\pi_{\text{heorem}}}{f(x)} = \sum_{n=0}^{\infty} a_{n}(x-x_{0}) = a_{0} + a_{1}(x-x_{0}) + a_{2}(x-x_{0}) + \cdots
$$
\nhas $\text{rad}(x) = \sum_{n=1}^{\infty} n \cdot a_{n}(x-x_{0})^{n-1}$
\n $f'(x) = \sum_{n=1}^{\infty} n \cdot a_{n}(x-x_{0})^{n-1}$
\n $= a_{1} + 2 a_{2}(x-x_{0}) + 3 a_{3}(x-x_{0}) + \cdots$
\nand ∞

$$
\int f(x)dx = \sum_{h=0}^{\infty} \frac{a_n}{h!} (x-x_0)^{h+1}
$$

= $a_0(x-x_0) + \frac{a_1}{2} (x-x_0)^2 + \frac{a_2}{3} (x-x_0)^3$

where the power series for
$$
f'(x)
$$

and $\int f(x)dx$ also have
vadii of convergence Γ .

$$
\frac{E x}{x} = \frac{1}{x} \quad \text{and} \quad x_{0} = 1.
$$
\nIf we only look at x > 0, then

\n
$$
\frac{1}{x} = \frac{d}{dx} \left[x(x) - \frac{1}{x} \left(x^{2} - 1 \right) \right]
$$
\n
$$
\frac{1}{x} = \frac{d}{dx} \left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^{2} \right]
$$
\n
$$
\frac{d}{dx} \left[\sum_{n=1}^{\infty} (x-1)^{2} + \frac{1}{3} (x-1)^{3} \right]
$$
\n
$$
= \frac{d}{dx} \left[(x-1) - \frac{1}{2} (x-1)^{2} + \frac{1}{3} (x-1)^{3} \right]
$$
\n
$$
= \sqrt{-1} (x-1) + (x-1)^{2} - \cdots
$$
\nSo,

\n
$$
\frac{1}{x} = \sum_{n=1}^{\infty} (-1)^{n+1} (x-1)^{n-1} = 1 - (x-1) + (x-1)^{2} \cdots
$$
\nwhere, as radius of the success is not a given in the image.

\nwhere $x_{0} = 1$.

\nwhere $x_{0} = 1$.

\nwhere $x_{0} = 1$.

\nSo, $\frac{1}{x} = \frac{e^{x} (1 + e^{x})}{e^{x} (1 + e^{x})}$ is the series.